LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

BIGDOSE: software for 3D personalized targeted radionuclide therapy dosimetry.

Photo from wikipedia

Background Advance 3D quantitative radionuclide imaging techniques boost the accuracy of targeted radionuclide therapy (TRT) dosimetry to voxel level. The goal of this work is to develop a comprehensive 3D… Click to show full abstract

Background Advance 3D quantitative radionuclide imaging techniques boost the accuracy of targeted radionuclide therapy (TRT) dosimetry to voxel level. The goal of this work is to develop a comprehensive 3D dosimetric software, BIGDOSE, with new features of image registration and virtual CT for patient-specific dosimetry. Methods BIGDOSE includes a portable graphical user interface written in Python, integrating (I) input of sequential ECT/CT images; (II) segmentation; (III) non-rigid image registration; (IV) curve fitting and voxel-based integration; (V) dose conversion and (VI) 3D dose analysis. The accuracy of the software was evaluated using a simulation study with 9 XCAT phantoms. We simulated SPECT/CT acquisitions at 1, 12, 24, 72 and 144-hrs post In-111 Zevalin injection with inter-scans misalignments using an analytical projector for medium energy general purpose (MEGP) collimator, modeling attenuation, scatter and collimator-detector response. The SPECT data were reconstructed using quantitative OS-EM method. A CT organ-based registration was performed before the dose calculation. Organ absorbed doses for the corresponding Y-90 therapeutic agent were calculated on target organs and compared with those obtained from OLINDA/EXM, using dose measured from GATE as the gold standard. One patient with In-111 DTPAOC injection as well as two patients with Y-90 microsphere embolization were used to demonstrate the clinical effectiveness of our software. Results In the simulation, the organ dose errors of BIGDOSE were -9.59%±9.06%, -8.36±5.82%, -23.41%±6.67%, -6.05%±2.06% for liver, spleen, kidneys and lungs, while they were -25.72%±12.52%, -14.93%±10.91%, -28.63%±12.97% and -45.30%±5.84% for OLINDA/EXM. Cumulative dose volume histograms, dose maps and iso-dose contours provided 3D dose distribution information on the simulated and patient data. Conclusions BIGDOSE provides a one-stop platform for voxel-based dose estimation with enhanced functions. It is a promising tool to streamline the current clinical TRT dosimetric practice with high accuracy, incorporating 3D personalized imaging information for improved treatment outcome.

Keywords: radionuclide therapy; targeted radionuclide; dosimetry; software

Journal Title: Quantitative imaging in medicine and surgery
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.