A digitized workflow from predrill pore-pressure modeling with a Monte Carlo approach until update of the pressure prognosis while drilling from (for example) sonic or resistivity data is described. The… Click to show full abstract
A digitized workflow from predrill pore-pressure modeling with a Monte Carlo approach until update of the pressure prognosis while drilling from (for example) sonic or resistivity data is described. The approach has the potential to reduce the uncertainty in the predicted mud-weight window ahead of the bit. For the 3D pressure modeling, a basin modeling software is used, where the pressure compartments in the study area are defined by faults interpreted from seismic. Pressure generation and dissipation are calculated for the study area over millions of years, as the basin was subsiding and compaction was taking place. Key input parameters such as minimum horizontal stress, vertical stress, and frictional coefficients for failure criteria are varied. The output is pore-pressure profiles along the planned well path, with uncertainties. The work presented in this paper was carried out on a North Sea data set. The results show that the uncertainty in the pore pressures will highly influence the uncertainty span in both the fracture gradient and the collapse gradient. Representing the mud-weight window in terms of the most likely collapse and fracturing curve, with corresponding minimum and maximum pore-pressure-derived limits on each side, makes for a more realistic prediction. It presents the uncertainty in the result in a simple visual form, using a “traffic light” approach. While drilling, log data will automatically be used to update the pressure and mud-weight prognosis ahead of bit. The digital updated prognosis can help the drilling crew in decision making during drilling campaigns.
               
Click one of the above tabs to view related content.