LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Proppant Transport in a Newtonian Fluid Under Laminar Flow

Photo from wikipedia

Model proppant transport experiments are conducted at the laboratory scale using a Newtonian carrier fluid in a long tube of rectangular cross section. Under the particular flow conditions studied, we… Click to show full abstract

Model proppant transport experiments are conducted at the laboratory scale using a Newtonian carrier fluid in a long tube of rectangular cross section. Under the particular flow conditions studied, we observe the buildup of a dense but flowing sediment, which rapidly reaches a steady-state height. The existence of this steady-state flowing sediment implies that the proppant flux leaving the channel equals that entering the channel; that is, “efficient” proppant transport occurs. As soon as the suspension flow is stopped, the fluidized sediment ceases flowing and quickly becomes more compact. This collapse implies that the particle sediment is maintained in an expanded state while under flow, with an average volume fraction considerably lower than that under static conditions. The relevant mechanism of sediment transport is identified as viscous resuspension because the flow is at a low Reynolds number (Re at approximately 0.1). We estimate the average volume fraction of the resuspended sediment from experimental measurements of the “expanded” flowing sediment height, with the assumption that the corresponding compact sediment volume fraction is ϕ0=0.61, the volume fraction at which the suspension viscosity diverges. Predictions of the resuspended sediment heights are made with a simple approach based on the diffusive flux model by Leighton and Acrivos (1986) using the average shear stress across the channel width. A good agreement is found between the predicted and experimental values, indicating that 2D effects remain weak. Microscopic observations show that the sediment is fully fluidized while under flow for all the flow rates studied in our channel, and one does not observe the buildup of static sediment banks that are observed in larger-scale tests during the suspension flow (Kern et al. 1959; Babcock et al. 1967; Schols and Visser 1974; Sievert et al. 1981). This apparent difference is explained in the context of the viscous resuspension model.

Keywords: proppant transport; fluid; transport; volume fraction; channel; flow

Journal Title: Spe Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.