LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Secondary Metabolites Produced by Heterorhabditis Symbionts and Their Application in Agriculture: What We Know and What to Do Next.

Photo by thisisengineering from unsplash

Gram-negative Photorhabdus bacteria have a dual lifestyle: they are mutualists of Heterorhabditis nematodes and are pathogens of insects. Together, this nematode-bacterium partnership has been used to successfully control a wide… Click to show full abstract

Gram-negative Photorhabdus bacteria have a dual lifestyle: they are mutualists of Heterorhabditis nematodes and are pathogens of insects. Together, this nematode-bacterium partnership has been used to successfully control a wide range of agricultural insect pests. Photorhabdus produce a diverse array of small molecules that play key biological roles in regulating their dual roles. In particular, several secondary metabolites (SM) produced by this bacterium are known to play a critical role in the maintenance of a monoxenic infection in the insect host and are also known to prevent contamination of the cadaver from soil microbes and/or predation by arthropods. A few of the SM this bacteria produce have been isolated and identified, and their biological activities have also been tested in laboratory assays. Over the past two decades, analyses of the genomes of several Photorhabdus spp. have revealed the presence of SM numerous gene clusters that comprise more than 6% of these bacteria genomes. Furthermore, genome mining and characterization of biosynthetic pathways, have uncovered the richness of these compounds, which are predicted to vary across different Photorhabdus spp. and strains. Although progress has been made in the identification and function of SM genes and gene clusters, the targeted testing for the bioactivity of molecules has been scarce or mostly focused on medical applications. In this review, we summarize the current knowledge of Photorhabdus SM, emphasizing on their activity against plant pathogens and parasites. We further discuss their potential in the management of agricultural pests and the steps that need to be taken for the implementation of Photorhabdus SM in pest management.

Keywords: heterorhabditis symbionts; photorhabdus; metabolites produced; produced heterorhabditis; symbionts application; secondary metabolites

Journal Title: Journal of nematology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.