LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermodynamic characterization of synthetic autunite

Photo by johnmarkarnold from unsplash

Abstract Autunite, Ca[(UO2)(PO4)]2(H2O)11, is a common uranyl mineral found in oxidized portions of uranium deposits, as well as subsurface environments contaminated by uranium. Enthalpies of formation of autunite were obtained… Click to show full abstract

Abstract Autunite, Ca[(UO2)(PO4)]2(H2O)11, is a common uranyl mineral found in oxidized portions of uranium deposits, as well as subsurface environments contaminated by uranium. Enthalpies of formation of autunite were obtained via high-temperature oxide melt calorimetry using a 3Na2O⋅4MoO3 solvent at 976 K. The synthetic analog of autunite was prepared using slow mixing by diffusion into an aqueous barrier solution at room temperature. Prior to calorimetric measurements, the material was characterized using powder X-ray diffraction (PXRD), inductively coupled plasma optical emission spectrometry (ICP-OES), thermogravimetric analysis (TGA), and Raman spectroscopy, to ensure purity. The calculated enthalpy of formation from binary oxides of autunite is −579.92 ± 21.68 kJ/mol; the enthalpy of formation from the elements is −8311.32 ± 21.79 kJ/mol. The measured drop solution enthalpy allowed calculation of the enthalpy of the reaction of dehydration of autunite to meta-autunite. The results demonstrate that autunite is a metastable phase and explain the observed rapid dehydration to meta-autunite, a lower hydrate, as well as the common occurrence of the latter mineral in nature.

Keywords: synthetic autunite; spectroscopy; characterization synthetic; thermodynamic characterization

Journal Title: American Mineralogist
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.