LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoscale study of lamellar exsolutions in clinopyroxene from olivine gabbro: Recording crystallization sequences in iron-rich layered intrusions

Photo by aaronburden from unsplash

Abstract Pyroxene exsolutions and associated Fe–Ti oxides and spinels are described in a sample of olivine gabbro representing the Middle Zone of the Panzhihua layered intrusion, Southwest China, part of… Click to show full abstract

Abstract Pyroxene exsolutions and associated Fe–Ti oxides and spinels are described in a sample of olivine gabbro representing the Middle Zone of the Panzhihua layered intrusion, Southwest China, part of the Emeishan LIP. High-angle annular dark-field scanning transmission electron microscope imaging, electron diffraction, and energy dispersive spectroscopy reveal complex multi-stage exsolution relationships in the host clinopyroxene. The studied assemblage is common in gabbroic rocks and comprises subcalcic diopside and lamellar clinoenstatite (<1 wt% Ca). Two sets of exsolved clinopyroxene lamellae are observed. Only one is, however, well developed as lamellae oriented approximately parallel to (801) of diopside, making an angle of ~10 to 11° with the (100) planes, or the c axis, of both phases. These are the so-called “100” lamellae with a perfect fit along a-crystallographic axes when viewed down to [010] zone axis. Crosscutting exsolutions of Fe–(Ti) oxides are relatively common throughout the same host clinopyroxene. Apart from ilmenite and magnetite with variable Ti-content, hercynite is a minor yet ubiquitous phase. The nanoscale study indicates a sequence of fine-scale processes: from higher-T (~1030–1100 °C): (I) (clino)enstatite exsolutions in low-Ca diopside; followed by (II) slightly Ca-richer diopside overgrowths and high-T titanomagnetite exsolution in diopside; to lower-T (<450 °C) (III) titanomagnetite exsolutions into ulvöspinel + magnetite; followed by (IV) sub-solidus re-equilibration in clinopyroxenes and among Fe–Ti oxides + hercynite. Using exact phase boundary theory, pressures of lamellar exsolution within the host diopside are estimated as ~2 GPa with an error of ± ≤1 GPa. The present study of complex exsolutions in clinopyroxene demonstrates that a nanoscale approach can help constrain P-T-X evolution during formation of layered intrusions.

Keywords: exsolutions clinopyroxene; nanoscale study; study; olivine gabbro; layered intrusions

Journal Title: American Mineralogist
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.