LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantification of excess 231Pa in late Quaternary igneous baddeleyite

Photo by jxk from unsplash

Abstract Initial excess protactinium (231Pa) is a frequently suspected source of discordance in baddeleyite (ZrO2) geochronology, which limits accurate U/Pb dating, but such excesses have never been directly demonstrated. In… Click to show full abstract

Abstract Initial excess protactinium (231Pa) is a frequently suspected source of discordance in baddeleyite (ZrO2) geochronology, which limits accurate U/Pb dating, but such excesses have never been directly demonstrated. In this study, Pa incorporation in late Holocene baddeleyite from Somma-Vesuvius (Campanian Volcanic Province, central Italy) and Laacher See (East Eifel Volcanic Field, western Germany) was quantified by U-Th-Pa measurements using a large-geometry ion microprobe. Bad-deleyite crystals isolated from subvolcanic syenites have average U concentrations of ~200 ppm and are largely stoichiometric with minor abundances of Nb, Hf, Ti, and Fe up to a few weight percent. Measured (231Pa)/(235U) activity ratios are significantly above the secular equilibrium value of unity and range from 3.4(8) to 14.9(2.6) in Vesuvius baddeleyite and from 3.6(9) to 8.9(1.4) in Laacher See baddeleyite (values within parentheses represent uncertainties in the last significant figures reported as 1σ throughout the text). Crystallization ages of 5.12(56) ka (Vesuvius; MSWD = 0.96, n = 12) and 15.6(2.0) ka (Laacher See; MSWD = 0.91, n = 10) were obtained from (230Th)/(238U) disequilibria for the same crystals, which are close to the respective eruption ages. Applying a corresponding age correction indicates average initial (231Pa)/(235U)0 of 8.8(1.0) (Vesuvius) and 7.9(5) (Laacher See). For reasonable melt activities, model baddeleyite-melt distribution coefficients of DPa/DU = 5.8(2) and 4.1(2) are obtained for Vesuvius and Laacher See, respectively. Speciation-dependent (Pa4+ vs. Pa5+) partitioning coefficients (D values) from crystal lattice strain models for tetra- and pentavalent proxy ions significantly exceed DPa/DU inferred from direct analysis of 231Pa for Pa5+. This is consistent with predominantly reduced Pa4+ in the melt, for which D values similar to U4+ are expected. Contrary to common assumptions, baddeleyite-crystallizing melts from Vesuvius and Laacher See appear to be dominated by Pa4+ rather than Pa5+. An initial disequilibrium correction for baddeleyite geochronology using DPa/DU = 5 ± 1 is recommended for oxidized phonolitic melt compositions.

Keywords: quantification excess; baddeleyite; laacher see; vesuvius laacher; geochronology; melt

Journal Title: American Mineralogist
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.