Political and social scientists have been relying extensively on keywords such as hashtags to mine social movement data from social media sites, particularly Twitter. Yet, prior work demonstrates that unrepresentative… Click to show full abstract
Political and social scientists have been relying extensively on keywords such as hashtags to mine social movement data from social media sites, particularly Twitter. Yet, prior work demonstrates that unrepresentative keyword sets can lead to flawed research conclusions. Numerous keyword expansion methods have been proposed to increase the comprehensiveness of keywords, but systematic evaluations of these methods have been lacking. Our paper fills this gap. We evaluate five diverse keyword expansion techniques (or pipelines) on five representative social movements across two distinct activity levels. Our results guide researchers who aim to use social media keyword searches to mine data. For instance, we show that word embedding-based methods significantly outperform other even more complex and newer approaches when movements are in normal activity periods. These methods are also less computationally intensive. More importantly, we also observe that no single pipeline can identify little more than half of all movement-related tweets when these movements are at their peak mobilization period offline. However, coverage can increase significantly when more than one pipeline is used. This is true even when the pipelines are selected at random.
               
Click one of the above tabs to view related content.