Lithium-sulfur batteries are promising next-generation energy storage systems with high theoretical specific capacity. Despite extensive research efforts, it is still challenging to rationally design electrocatalysts with fast kinetics and effective… Click to show full abstract
Lithium-sulfur batteries are promising next-generation energy storage systems with high theoretical specific capacity. Despite extensive research efforts, it is still challenging to rationally design electrocatalysts with fast kinetics and effective adsorption of polysulfides. Herein, Fe-doped ReS2 (Fe-ReS2) ultrathin nanosheets are prepared as an electrocatalyst to trap the intermediates and accelerate the sulfur reduction reaction kinetics. Density functional theory calculations combined with activation energies in the multistep sulfur reduction reaction reveal that the Fe-ReS2 considerably reduces the activation energy and optimizes the optimum adsorption strength of polysulfides and catalytic activity. The Fe-ReS2/S exhibits a highly reversible discharge capacity of 882.3 mA h g-1 at 1 C. For 500 cycles, the capacity fade rate is 0.013% per cycle. Moreover, in situ Raman spectroscopy measurements further confirmed that both sulfur reduction and oxidation processes were significantly enhanced by Fe-ReS2.
               
Click one of the above tabs to view related content.