LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A sensitive photoluminescent sensor based on highly charged monoruthenium(II) complexes for dopamine detection.

Photo by alex_andrews from unsplash

A sensitive and selective photoluminescent sensor based on the highly charged monoruthenium(II) complex was designed to detect dopamine (DA) in aqueous samples. Two novel highly charged cationic ruthenium(II) complexes [Ru(bpy)2(bpy-N)]X4… Click to show full abstract

A sensitive and selective photoluminescent sensor based on the highly charged monoruthenium(II) complex was designed to detect dopamine (DA) in aqueous samples. Two novel highly charged cationic ruthenium(II) complexes [Ru(bpy)2(bpy-N)]X4 (bpy = 2,2'-bipyridine, bpy-N = 4,4'-bis[N,N,N-triethyl-(methylamino)]-2,2'-bipyridine, X- = [PF6]- (1a) or Cl- (1b) and [Ru(bpy)(bpy-N)2]X6 (X- = [PF6]- (2a) or Cl-(2b)) can be assembled with anionic surfactant sodium dodecylbenzene sulfonate (SDBS), leading to an enhancement of photoluminescence intensity. Upon addition of DA to the system, the photoluminescence intensity of the assembled system was quenched due to the energy transfer effect. It exhibited a wide linear range (0.1-50 μM) and low detection limit (10 nM). The sensor demonstrated a high selectivity toward DA, especially in the presence of adrenaline (Adr) and norepinephrine (NE), whose structures are similar to DA in biological systems. With the merits of simple operation, obvious phenomenon and fast response speed, the sensor had a potential application prospect in human urine sample.

Keywords: charged monoruthenium; sensor based; photoluminescent sensor; based highly; sensor; highly charged

Journal Title: Journal of inorganic biochemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.