LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reduction of antibiotic resistance genes (ARGs) in swine manure-fertilized soil via fermentation broth from fruit and vegetable waste.

Photo by gabrielj_photography from unsplash

The issue of growing increase of antibiotic resistance genes (ARGs) in manure-fertilized soil needs urgently addressing. In this study, fermentation broth from fruit and vegetable waste was prepared to reduce… Click to show full abstract

The issue of growing increase of antibiotic resistance genes (ARGs) in manure-fertilized soil needs urgently addressing. In this study, fermentation broth from fruit and vegetable waste was prepared to reduce ARG abundance in swine manure-fertilized soils. With a six-month field experiment, we found that swine manure-fertilized soil had significantly higher ARG abundance than soil applied with chemical fertilizer. As expected, the homemade fermentation broth significantly reduced ARG abundance in swine manure-fertilized soil, possibly through the decrease of abundance of Actinomyces, in which there was a 48.0%, 51.9%, and 66.7% decrease in the abundance of Nocardioides, Streptomyces, and Nonomuraea, respectively. With the bacteriostatic experiment, we observed that fermentation broth (5 mL/L) significantly inhibited the growth and metabolism in Actinomycetes spp. and Nocardioides sp., in terms of ATPase and PDH activity. These findings confirmed that the inhibition of Actinobacteria, some of the most dominant ARG hosts, was one of the main mechanisms responsible for the decrease in ARG abundance in fermentation broth-treated soil. This study provides field-scale evidence of a feasible strategy for controlling farmland ARG pollution, which is of utmost importance for soil health in the context of sustainable agriculture.

Keywords: fertilized soil; manure fertilized; fermentation broth; soil

Journal Title: Environmental research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.