Worldwide the use of pesticides has increased, especially in the industry and agriculture sector even though they contain highly toxic substances. The use of pesticides has various negative effects on… Click to show full abstract
Worldwide the use of pesticides has increased, especially in the industry and agriculture sector even though they contain highly toxic substances. The use of pesticides has various negative effects on the aquatic ecosystem and organisms within these ecosystems. The paper aimed to assess the effects of increased concentrations of malaria vector control insecticides (Dichlorodiphenyltrichloroethane (DDT) and Deltamethrin (DTM)) on the freshwater diatom community structure using a microcosm approach as well as determine whether a mixture (DDT 1:1 Deltamethrin) exposure will have a greater influence on the diatom community when compared to single exposures of these insecticides. Diatoms were exposed to a high and low concentration (based on LC50 data for freshwater Xenopus laevis from the USEPA Ecotox database) of DDT, DTM and a mixture in lentic microcosms over a total period of 28 days. Results indicated that irrespective of exposure concentrations, DDT, DTM and a mixture had negative effects on the diatom community including functionality and vitality as these insecticides induced changes to their chloroplasts. There was an increased percentage dead cells for all exposures compared to the control, with the insecticides having a phototoxic effect on the diatom community. Exposure to the selected insecticides caused a significant decrease in some diatom metrics indicating the negative effects these insecticides have on the diatom metrics. Therefore, diatoms may prove to be useful as bio-indicators in ecotoxicology studies when assessing the effects of any insecticide exposures.
               
Click one of the above tabs to view related content.