LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of phosphate, silicate, humic acid, and calcium on the release of As(V) co-precipitated with Fe(III) and Fe(II) during aging.

Photo from wikipedia

The effects of phosphate (P), silicate (Si), humic acid (HA), and calcium (Ca) on the release of As(V) co-precipitated with Fe(III) and Fe(II) during aging were investigated. As(V) in synthetic… Click to show full abstract

The effects of phosphate (P), silicate (Si), humic acid (HA), and calcium (Ca) on the release of As(V) co-precipitated with Fe(III) and Fe(II) during aging were investigated. As(V) in synthetic groundwater could be efficiently removed by both Fe(III) and Fe(II) processes. The addition of P remarkably decreased As(V) removal efficiency while no obvious release of As(V) during aging was observed. Si and HA reduced As(V) removal to a less extent than P but caused notable As(V) release during aging. FTIR spectra and particle size of the precipitates before and after aging indicated that As(V) release in the presence of Si was due to the serious structural transformation and particle aggregation of the precipitates during aging. While for HA, As(V) release was caused by sorption of HA on the precipitates and dissolution of the precipitates by HA. The addition of Ca partially counteracted the adverse impacts of P, Si, and HA and promoted As(V) removal efficiency but had limited inhibitory effect on As(V) release as it induced more serious particle aggregation during aging. The results demonstrated that the release of As(V) caused by Si and HA should be considered when using Fe coagulation for in-situ treatment of As(V) contaminated groundwater.

Keywords: effects phosphate; phosphate silicate; humic acid; release; acid calcium; silicate humic

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.