Nitrogen loss during composting is closely related to NH4+-N conversion, and ammonia-oxidizing bacteria (AOB) are important microorganisms that promote NH4+-N conversion. Since the biological activity of conventional AOB agents used… Click to show full abstract
Nitrogen loss during composting is closely related to NH4+-N conversion, and ammonia-oxidizing bacteria (AOB) are important microorganisms that promote NH4+-N conversion. Since the biological activity of conventional AOB agents used for compost inoculation declines rapidly during the thermophilic phase of composting, new compound inoculants should be developed that are active during that phase. In the current study, the effects of inoculating cattle manure compost with newly isolated AOB (5%, v/w) [thermotolerant AOB X-2 strain (T-AOB-2), mesophilic AOB X-4 strain (M-AOB-4), and AOB X-2 combined with AOB X-4 (MT-AOB-2-4)] on the conversion of nitrogen, compost maturity, and the resident microbial community were studied. During 35 days of composting, compared with the control, AOB inoculation reduced NH3 emissions by 29.98-46.94%, accelerated the conversion of NH4+-N to NO2--N, increased seed germination values by 13.00-25.90%, and increased the abundance of the microbial community at the thermophilic phase (16.38-68.81%). Network analysis revealed that Bacillaceae play a crucial role in the composting process, with the correlation coefficients: 0.83 (p < 0.05) with NH3, 0.64 (p < 0.05) with NH4+-N, and 0.81 (p < 0.05) with NO2--N. In addition, inoculation with MT-AOB-2-4 notably increased the total nitrogen content of compost, prolonged the sanitation stage, and promoted compost maturity. Hence, MT-AOB-2-4 may be used to increase the microbial community abundance and improve the efficiency of cattle manure composting.
               
Click one of the above tabs to view related content.