LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and biological activity evaluation of podophyllotoxin-linked bile acid derivatives as potential anti-liver cancer agents.

Photo by nci from unsplash

Podophyllotoxin's undifferentiated cytotoxicity and poor selectivity limit its clinical application. To improve above disadvantages, conjugation of bile acids with podophyllotoxin could improve cell line selectivity of liver cancer to achieve… Click to show full abstract

Podophyllotoxin's undifferentiated cytotoxicity and poor selectivity limit its clinical application. To improve above disadvantages, conjugation of bile acids with podophyllotoxin could improve cell line selectivity of liver cancer to achieve clinical translation further. Enlightened by the bile acids' moiety magic characters, thirty podophyllotoxin-linked bile acid derivatives had been designed and synthesized. The cytotoxicity of these compounds in vitro was evaluated on HepG2, HCT-116, A549 and MDCK cell lines. After conjunction with bile acids, most of the derivatives (IC50 = 0.066-0.831 μM) were more potent against above three types of tumor cells than Etoposide (VP-16, IC50 = 4.319-41.080 μM) and exhibited similar antitumor activity compared with doxorubicin (DOX, IC50 = 0.230-0.745 μM). Moreover, structure-activity relationship displayed the length of the linker chain between podophyllotoxin and bile acids affected the cytotoxicity. Especially, compound 23 exhibited strong activity against HepG2 cell lines (IC50 = 0.188 ± 0.01 μM) than MDCK cell lines (IC50 = 4.780 ± 0.50 μM) and its SI (IC50MDCK/IC50HepG2) value of compound 23 was 25.4. Further antitumor mechanism studies showed that compound 23 acted as Topo Ⅱ inhibition and induced cell apoptosis with S cell cycle arrest. In particular, compound 23 showed valid antitumor efficacy at 10 mg/kg by intraperitoneal administration with a tumor inhibition rate of 60.9% in the Hepa1-6 xenograft mice model. The current research displayed that introduction of bile acids contributed to improve selectivity and activity to cell, and compound 23 could be a promising anti-tumor candidate.

Keywords: cell; liver cancer; podophyllotoxin; podophyllotoxin linked; bile acids; activity

Journal Title: Bioorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.