LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alkaline aging significantly affects Mn(II) adsorption capacity of polypropylene microplastics in water environments: Critical roles of natural organic matter and colloidal particles.

Photo from wikipedia

Most microplastic particles may undergo various aging in water environments. In this work, surface physicochemical properties were firstly compared among pristine polypropylene (PP-pris) microplastics, and two aged ones obtained after… Click to show full abstract

Most microplastic particles may undergo various aging in water environments. In this work, surface physicochemical properties were firstly compared among pristine polypropylene (PP-pris) microplastics, and two aged ones obtained after pretreated with HCl (PP-acid) and NaOH (PP-alka). When compared with PP-pris and PP-acid, PP-alka had a much stronger Mn(II) adsorption capacity. The results regarding the role of natural organic matter and colloidal particle concentrations on adsorption demonstrated that for water solutions either containing kaolin or not, humic acid (HA) had significantly negative influence on Mn(II) adsorption capacity of PP-alka due to their complexation and competition effects, and its negative influence became enhanced with increasing kaolin concentrations. Besides, established conceptual models of adsorption were applied to comprehensively explore adsorption mechanisms of PP-alka for Mn(II) in the coexistence of HA and kaolin. An important suggestion was that in complicated adsorption-reactor system, great numbers of microplastics-kaolin heteroaggregates might be formed via ion bridging of Mn(II) and/or polymer bridging of HA. So these formed aggregates were possible to re-organize themselves, under pre-set vibration-speed conditions, for achieving a more stable structure. As a consequence, Mn(II) adsorption behaviors would be affected by changes in steric-hindrance effects of HA molecules and surface charge distribution of resultant heteroaggregates.

Keywords: adsorption capacity; adsorption; natural organic; water environments

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.