LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering of 3D graphene hydrogel-supported MnO2-FeOOH nanoparticles with synergistic effect of oxidation and adsorption toward highly efficient removal of arsenic.

Photo from wikipedia

Iron-manganese-based adsorbent has been regarded as a promising candidate for arsenic purification from water, especially the inorganic As(III), due to its inherent advantage of low cost and large-scale producibility. However,… Click to show full abstract

Iron-manganese-based adsorbent has been regarded as a promising candidate for arsenic purification from water, especially the inorganic As(III), due to its inherent advantage of low cost and large-scale producibility. However, the nanoparticle aggregation, metal leaching and insufficient removal efficiency remain the main challenges in the practical applications of the granular adsorbents. In this work, we develop a universal strategy for the fabrication of an active Fe(III) oxyhydroxide-Mn(IV) oxide/3D graphene oxide (GO) gel composite via a simple hydrothermal reaction. The successful immobilization of Fe-Mn oxyhydroxide/oxides on the interconnected GO gels was intuitively confirmed by the transmission electron microscopy and atomic force microscopy. The combinative characterizations of the X-ray absorption near edge structure and X-ray photoelectron spectroscopy clearly reveal the electron transfer from Fe atoms to Mn atoms. The optimized Fe-Mn/GO composites possess the superior performance with the removal efficiency of over 90% for As(III) at pH 7.0 and ∼97% for As(V) at pH 5.0 and the As(III, V) levels (100 μg l-1) are reduced to below the WHO guideline of 10 μg l-1. The sorption isotherm and kinetic experiments on the As removal were also carried out. The post characterizations are employed to better unveil the oxidation-adsorption mechanism. Notably, the application of Fe-Mn/GO composites in the treatment of As-simulated natural water demonstrated a stable and continuous operation for over 20 days and an effluent concentration of arsenic as low as the 10 μg l-1 in a specially designed flow reactor.

Keywords: graphene; microscopy; removal; oxidation adsorption

Journal Title: Environmental pollution
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.