Shallow lakes and ponds, providing essential ecological and environmental services, are simultaneously disrupted by various pollutants of emerging concern (PECs). As a group of PECs, microplastics (MPs) ubiquitously found in… Click to show full abstract
Shallow lakes and ponds, providing essential ecological and environmental services, are simultaneously disrupted by various pollutants of emerging concern (PECs). As a group of PECs, microplastics (MPs) ubiquitously found in freshwater are toxic to a huge variety of organisms. However, the consequence of secondary factors such as food quantity determining MPs toxicity, and the corresponding water safety risks await assessment is still poorly understood. Accordingly, we investigated how MPs across three particle sizes (10, 1 and 0.07 µm) interacted with food abundance to affect survival, reproduction and population performance in the waterflea Daphnia magna. Across multiple population traits, we found that MPs toxicity on Daphnia population performance was attenuated by higher food quantity, but this attenuation size was strongly dependent on MPs size. Path analysis results showed population growth rate was mainly constrained by reduced survival rather than fecundity. Furthermore, the additive null model revealed that the interactive effects of food abundance and MPs were predominately recognized as synergism and trait dependency. The present findings underscore the importance of considering the complexity of interactions that can occur in the wild, when assessing the effects of plastics pollution on population dynamics of the basic trophic level in lakes and ponds.
               
Click one of the above tabs to view related content.