LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PseudoRHDV constructed with feline calicivirus genome as vector has the characteristics of well proliferation in vitro.

Photo by sebamolinafotografia from unsplash

Rabbit hemorrhagic disease virus (RHDV) is a major member of the Caliciviridae. which is fatal to wild and domestic European rabbit. Because RHDV does not reproduce stably in vitro, molecular… Click to show full abstract

Rabbit hemorrhagic disease virus (RHDV) is a major member of the Caliciviridae. which is fatal to wild and domestic European rabbit. Because RHDV does not reproduce stably in vitro, molecular studies on this pathogen have been limited. Feline calicivirus (FCV), also a member of the Caliciviridae, reproduces well in vitro and is a good viral vector. As these viruses share similar genomic structures, we hypothesized that a chimeric infectious clone could be constructed by replacing the corresponding regions of the FCV genome with the structural proteins VP60 and VP10 and the 3' non-translated region of the RHDV genome. Transfection of the infectious clone into RK13 cells made it possible to rescue the chimeric virus, named pseudoRHDV, which reproduced in an RK13 cell line with high titer. An infectious pseudoRHDV was produced, which proliferated in RK13 cells to at least 15 generations. PseudoRHDV caused significant cytopathic changes in the RK13 cells, with a viral titer was 9.74 log10 TCID50 / mL. The pseudoRHDV constructed in this study will be helpful for investigating the molecular biology of RHDV, especially its interaction with the host. The model can also be used to explore some common laws between FCV and RHDV.

Keywords: rk13 cells; feline calicivirus; constructed feline; vector; pseudorhdv constructed

Journal Title: Journal of virological methods
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.