Control of monoclonal antibody (mAb) concentrations in serum is important for maintaining the safety and efficacy of these lifesaving therapeutics. Point-of-care (POC) quantification of therapeutic mAbs could ensure that patients… Click to show full abstract
Control of monoclonal antibody (mAb) concentrations in serum is important for maintaining the safety and efficacy of these lifesaving therapeutics. Point-of-care (POC) quantification of therapeutic mAbs could ensure that patients have effective mAb levels without compromising safety. This work uses mimotope-functionalized microporous alumina affinity membranes in vertical flow assays for detection and quantitation of therapeutic mAbs. Selective capture of bevacizumab from 1000:1 diluted serum or plasma and binding of a fluorescently labelled anti-human IgG secondary antibody enable fluorescence-based analysis of bevacizumab at its therapeutically relevant concentration range of ∼50-300 μg/mL. The assay results in a linear relationship between the fluorescence intensity of the antibody capture spot and the bevacizumab concentration. A simple prototype microfluidic device containing these membranes allows washing, reagent additions and visualization of signal within 15 min using a total of 5 mL of fluid. The prototype devices can monitor physiologically relevant bevacizumab levels in diluted serum, and future refinements might lead to a POC device for therapeutic drug monitoring.
               
Click one of the above tabs to view related content.