Using fast imaging microscopy, we investigate in detail the expansion of micron-sized pores occurring in individual electroporated giant unilamellar vesicles composed of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). To infer pore dynamics… Click to show full abstract
Using fast imaging microscopy, we investigate in detail the expansion of micron-sized pores occurring in individual electroporated giant unilamellar vesicles composed of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). To infer pore dynamics on the electrodeformed and electropermeabilized vesicles, we develop a computational approach and provide for the first time a direct evidence of quantitative agreement between experimental data and the well-established theoretical prediction of Smith, Neu and Krassowska (SNK). The analysis we describe also provides an extension to the current theoretical literature on how the conductivity ratio of the internal and the external vesicle solution plays a determinant role in the definition of the electrical force driving pore expansion kinetics.
               
Click one of the above tabs to view related content.