LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization and mechanism of Tetrabromobisphenol A removal by dithionite under anaerobic conditions: Response surface methodology and degradation pathway.

Photo by ferhadd from unsplash

In this study, dithionite (DTN) was used to degrade Tetrabromobisphenol A (TBBPA), a widely applied brominated flame retardants, under anaerobic conditions with the reaction terminator of nitrate. The optimization of… Click to show full abstract

In this study, dithionite (DTN) was used to degrade Tetrabromobisphenol A (TBBPA), a widely applied brominated flame retardants, under anaerobic conditions with the reaction terminator of nitrate. The optimization of reaction parameters including TBBPA concentration, DTN concentration and pH value were conducted by response surface methodology (RSM) based on central composite design (CCD). The degradation process could be simulated accurately by a quadratic model with the correlation coefficient R2 of 0.9550. The interaction between pH and DTN concentration was significant with the p-value of 0.0017. Moreover, the maximum TBBPA removal was 87.6 ± 3.2% and obtained at TBBPA concentration of 2.00 μM, the DTN concentration of 322.31 μM, and the pH of 6.14 under anaerobic conditions. It was found that the factors influenced TBBPA removal followed the order: pH > DTN concentration > TBBPA concentration. The major active products from DTN are SO32- and S2O32-. In addition, different inhibitions of natural water matrix including chloride, bicarbonate, sulfide and humic acid on TBBPA degradation had been confirmed. According to the identified six intermediates via gas chromatography-mass spectrometry (GC-MS), two steps of the degradation pathways were speculated, including the breakage of C-Br bond and C-C bond. This study provides a convenient way to degrade TBBPA.

Keywords: methodology; removal; dtn; concentration; degradation; anaerobic conditions

Journal Title: Journal of environmental management
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.