LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microplastic in oysters: A review of global trends and comparison to southern Australia.

Photo from wikipedia

Microplastics have been documented in a plethora of marine environments and organisms. These small plastics threaten ecosystem health, with implications for seafood species' health. Oysters are an important cultural and… Click to show full abstract

Microplastics have been documented in a plethora of marine environments and organisms. These small plastics threaten ecosystem health, with implications for seafood species' health. Oysters are an important cultural and economic aquaculture species globally. Due to their filter feeding mechanisms, they can act as an indicator species and proxy for environmental contamination. This makes them an ideal organism for investigating microplastic pollution. Here, we first systematically reviewed the global literature investigating microplastic in oysters. Globally, 94.4% of all oysters had microplastics, with an average of 1.41 ± 0.33 per gram of soft tissue wet weight (gww). The review showed that wild-caught oysters contained more than double the amount of microplastic than aquaculture raised specimens, likely reflecting the clean and productive waters in which oyster aquaculture systems are commonly located. Second, we quantified microplastic presence and polymer type in commercially farmed oysters (Crassostrea gigas and Saccostrea glomerata) across a broad spatial scale, covering eight sites in southern Australia. Microplastics were present in 49.4% of all sampled oysters, with specimens from all locations containing microplastics. On average, whole oysters contained 0.83 ± 0.08 microplastics per individual or 0.09 ± 0.01 microplastics gww. Using Fourier-Transform Infrared Spectroscopy, we identified that 62% of the verified microplastics were vexar plastic netting, a low-density polyethylene commonly used in aquaculture production. Understanding the abundance and source of microplastic in these key seafood species is essential to determine if oysters are vulnerable to these contaminants and pose a risk to the oyster aquaculture industry as an important food resource.

Keywords: oysters review; global trends; review global; southern australia; microplastic oysters; aquaculture

Journal Title: Chemosphere
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.