LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Models of electroporation and the associated transmembrane molecular transport should be revisited.

Photo from wikipedia

Electroporation has become a powerful tool for nonviral delivery of various biomolecules such as nucleic acids, proteins, and chemotherapeutic drugs to virtually any living cell by exposing the cell membrane… Click to show full abstract

Electroporation has become a powerful tool for nonviral delivery of various biomolecules such as nucleic acids, proteins, and chemotherapeutic drugs to virtually any living cell by exposing the cell membrane to an intense pulsed electric field. Different multiphysics and multiscale models have been developed to describe the phenomenon of electroporation and predict molecular transport through the electroporated membrane. In this paper, we critically examine the existing mechanistic, single-cell models which allow spatially and temporally resolved numerical simulations of electroporation-induced transmembrane transport of small molecules by confronting them with different experimental measurements. Furthermore, we assess whether any of the proposed models is universal enough to describe the associated transmembrane transport in general for all the different pulse parameters and small molecules used in electroporation applications. We show that none of the tested models can be universally applied to the full range of experimental measurements. Even more importantly, we show that none of the models has been compared to sufficient amount of experimental data to confirm the model validity. Finally, we provide guidelines and recommendations on how to design and report experiments that can be used to validate an electroporation model and how to improve the development of mechanistic models.

Keywords: electroporation; models electroporation; transport; associated transmembrane; molecular transport

Journal Title: Bioelectrochemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.