Titanium (Ti) implant-associated infections are a challenge in orthopedic surgery, for which a series of antibacterial coatings have been designed and fabricated to reduce the risk of bacterial contamination. Herein,… Click to show full abstract
Titanium (Ti) implant-associated infections are a challenge in orthopedic surgery, for which a series of antibacterial coatings have been designed and fabricated to reduce the risk of bacterial contamination. Herein, we created a degradable three-layer sandwich-type coating to achieve long-term antibacterial effects while simultaneously reconstructing the local immune microenvironment. The vancomycin (Van)-loaded vaterite coating constitutes the outer and inner layers, whereas Interleukin-12 (IL-12)-containing liposomes embedded in sodium alginate constitutes the middle layer. Van, released from the vaterite, demonstrated a favorable and rapid bactericidal ability against the representative methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. The released IL-12 exhibited the desired immune reconstitution abilities, actively facilitating defenses against subsequent bacterial invasions. Furthermore, the biocompatibility and cell-binding feature of the multifunctional coating was beneficial for achieving solid interface intergradation. Overall, the benefits of the three-layer sandwich-type coating, including the convenient fabrication process, efficient antimicrobial activity, fast immune remodeling property, fine cell-binding feature, and biodegradability, highlight its promising translational potential in preventing implant infection. STATEMENT OF SIGNIFICANCE: To prevent titanium implant infections, researchers have designed various antibacterial coatings. However, most of these coatings focused only on killing the invading bacteria over a limited postoperative period. However, the local immune microenvironment is compromised during surgery. Local immune deflection impedes the ability of the local immune defenses to clear bacteria and limits immune memory building from active defense against long-term subsequent bacterial invasions. Furthermore, these coatings are usually nondegradable and differ substantially from bone components, thereby impairing the integration of the coating and bone interface and generating concerns about implant stability and bacterial contamination. In this work, we synthesized a degradable coating that provides sustained antibacterial activity, promotes immune reconstitution, and simultaneously achieves solid bone integration.
               
Click one of the above tabs to view related content.