LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulation of novel jellyfish type of process for bioremediation application.

Photo from wikipedia

A bioinspired device was fabricated as a sustainable remedial method and its performance as a membrane-enzyme reactor with cyclic ultrafiltration was investigated. The body of the jellyfish-like device was composed… Click to show full abstract

A bioinspired device was fabricated as a sustainable remedial method and its performance as a membrane-enzyme reactor with cyclic ultrafiltration was investigated. The body of the jellyfish-like device was composed of two parts: 1) Jellyfish arms: Mono and co-axial electrospinning have been utilized to synthesize the flexible parts (e.g., multilayer membrane PS-PVDF/PAN/PS-PVDF) used for immobilization of aliphatic degrading enzymes, and 2) Jellyfish tentacles: Hollow fiber membranes were selected for physical immobilization of polycyclic aromatic hydrocarbon (PAH) degrading enzymes. To study the behavior of the membrane/enzyme reactor, the hollow fiber enzyme reactor with pulsation was operated by recycling an enzyme solution to assess ultrafiltration efficiency. A mathematical model was suggested to describe the experimental data obtained in this study to predict the effectiveness of the reactor for PAH removal. When testing the performance of the jellyfish-like device, those equipped with nanofibers with an oil sorption capacity of (10. ±0.7gdilbit/gfiber) were more effective at removing oil particles before they touched the hollow fiber membrane surface. Moreover, the reaction rate measured in a free soluble enzyme and a recirculating immobilized enzyme solution exhibited a slight difference in the kinetic parameter, Km (0.03 and 0.021 mM) due to the internal diffusional resistance. Based on biodegradation studies, a synergistic effect between membrane adsorption, enzymatic degradation, and ultrafiltration was proposed for the removal of anthracene from the column of water.

Keywords: simulation novel; membrane; enzyme reactor; enzyme; hollow fiber

Journal Title: Chemosphere
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.