Microporous organic networks (MONs) are a booming class of functional materials in elimination of environmental pollutants. However, the limit varieties of MONs still restrict their broad applications. Here we report… Click to show full abstract
Microporous organic networks (MONs) are a booming class of functional materials in elimination of environmental pollutants. However, the limit varieties of MONs still restrict their broad applications. Here we report the synthesis of a novel type of crown ether (CE)-based MONs via the coupling between brominated 18-crown-6 ether and different aromatic alkynyls. The constructed CE-based MONs integrates the good conjugation property of MONs and the inherent host-guest binding sites of CE, allowing the ultrafast and efficient adsorption and removal of a typical environmental priority pollutant 2,4,6-trichlorophenol (2,4,6-TCP). The hydrophobic CE-based MONs can also address the recovery challenge of unstable discrete CE in most organic and inorganic solvents. All CE-based MONs displayed fast adsorption kinetics (< 3 min) and large adsorption capacities (229.1-341.7 mg g-1) for 2,4,6-TCP. The CE-based MONs also gave stable adsorption capacities for 2,4,6-TCP in pH range of 4.0-6.0, NaCl concentration of 0-40 mg L-1, HA concentration of 0-30 mg L-1, or H2O2 ratio of < 5 %. Density functional theory calculation, Fourier transform infrared and X-ray photoelectron spectra evaluation revealed adsorption process involved hydrophobic, π-π and hydrogen bonding interactions. The CE-based MONs also showed favorable reusability and good adsorption for other toxic chlorophenols. This work highlights the potential of CE-based MONs in contaminants elimination.
               
Click one of the above tabs to view related content.