LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phosphorylation by GSK-3β increases the stability of SIRT6 to alleviate TGF-β-induced fibrotic response in renal tubular cells.

Photo from wikipedia

AIMS The deacetylase Sirtuin 6 (SIRT6) is up-regulated during fibrogenesis in renal tubular cells and post-ischemia/reperfusion kidneys. Hence, our aim was to investigate the mechanism of SIRT6 up-regulation upon profibrotic… Click to show full abstract

AIMS The deacetylase Sirtuin 6 (SIRT6) is up-regulated during fibrogenesis in renal tubular cells and post-ischemia/reperfusion kidneys. Hence, our aim was to investigate the mechanism of SIRT6 up-regulation upon profibrotic stress. MAIN METHODS Immunohistochemical staining was used to detect the expression of UBC9 in the kidney section. The interaction of GSK-3β and SIRT6, and phosphorylation level of SIRT6 were detected by the immunoprecipitation assay. The wild-type and phosphorylated site mutant plasmids of SIRT6 were constructed and stably transfected to BUMPT cells to evaluate the phosphorylation function of SIRT6 by immunoblotting assay. KEY FINDINGS The phosphorylation of SIRT6 is significantly increased during TGF-β treatment in mouse renal tubular cells. GSK-3β can physically interact with SIRT6 in renal tubular cells, and this interaction is enhanced by TGF-β treatment. Moreover, GSK-3β is the phosphorylation kinase for SIRT6, and phosphorylates SIRT6 at Serine 326 residue to prevent its ubiquitination-mediated proteasomal degradation. Non-phosphorylatable mutant, S326A, of SIRT6, restores β-catenin activation and fibrotic changes in renal tubular cells. SIGNIFICANCE The present study demonstrates that a new mechanism for GSK-3β-mediated anti-fibrotic function in renal fibrosis through phosphorylation of SIRT6 to prevent its proteasomal degradation.

Keywords: tubular cells; tgf; renal tubular; sirt6; phosphorylation; gsk

Journal Title: Life sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.