LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superhydrophobic nanofibrous sponge with hierarchically layered structure for efficient harsh environmental oil-water separation.

Photo from wikipedia

Oil leakage has posed serious threat to the environment, but still remain a great challenge to be solved especially for harsh environmental conditions. Herein, robust superhydrophobic nickel hydroxide grown by… Click to show full abstract

Oil leakage has posed serious threat to the environment, but still remain a great challenge to be solved especially for harsh environmental conditions. Herein, robust superhydrophobic nickel hydroxide grown by hydrothermal method and stearic acid modification on a blow-spun polyacrylonitrile (PAN)/Al2O3 nanofibrous sponge was proposed, so that the nickel hydroxide-modified polyacrylonitrile sponge (NPAS) was successfully obtained for efficient oil-water separation. The porous NPAS with a distinctive hierarchically layered structure, which exhibited excellent separation efficiency and mechanical elasticity. Due to its superhydrophobic and high porosity, the absorption capacity of NPAS could reach as high as 45 g g-1. It could not only separate a series of oil-water mixture with a high steady flux of 12,413 L m-2 h-1 (dichloromethane-water), but also separate stabilized emulsions with a superior flux 2032 L m-2 h-1 (water-in-dichloromethane) under gravity, all of that with above 99.92% separation efficiencies, which was higher than that of the most reported sponges. Most importantly, its strong acid/alkali resistance enable it is suitable for hazardous materials treatment applications in harsh environmental conditions. This novel NPAS via facile large-scale blow-spinning provide an efficient strategy for oil-containing wastewater treatment and environmental protection.

Keywords: oil water; oil; water; sponge; separation; harsh environmental

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.