LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Concave gold nano-arrows (AuCNAs) for efficient catalytic reduction of 4-nitrophenol.

Photo by teveir from unsplash

Anisotropic gold nanostructures have attracted great attention in different fields including catalysis. Thermodynamically driven selective surface growth offers a reliable and reproducible method for anisotropic gold nanoparticle synthesis with specific… Click to show full abstract

Anisotropic gold nanostructures have attracted great attention in different fields including catalysis. Thermodynamically driven selective surface growth offers a reliable and reproducible method for anisotropic gold nanoparticle synthesis with specific morphologies. Herein, monocrystalline concave gold nano-arrows (AuCNAs) are prepared by the over-growth method using Au nanorods (AuNRs) as seeds. The as-prepared AuCNAs consist of a biconical head and four concave structures. Interestingly, silver ions (Ag+) concentration significantly affects the product morphology by tuning the peak positions of surface plasmon resonance (SPR), aspect ratio, arrow, and concave morphology of AuCNAs. The position of longitudinal SPR peaks is observed at 810, 805 and 782 nm at [Ag+]/[Au3+] molar ratios of 1:2, 1:1, and 2:1, respectively. Diameters and lengths of AuCNAs varied from 25 nm to 36 nm; 104 nm, 78 nm, and 120 nm, respectively. Additionally, the AuCNAs are applied for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in presence of excess NaBH4. Compared to gold nanorods (AuNRs), the prepared AuCNAs catalyst shows excellent catalytic activity, demonstrating that concave structures and sharp corners significantly enhance the catalytic activity. The value of pseudo-first-order reaction kinetic constants (kapp) increased from 0.0051 to 0.0195 s-1 with increasing catalyst valume from 7.5 to 37.5 μL. The highest normalized reaction rate constant (Knor) and turnover frequency (TOF) reach 5.84 × 104 min-1 mmol-1 and 443.47 h-1, respectively, at [Ag+]/[Au3+] ratio of 1:1 in AuCNAs catalyst. This study expands catalytic applications of anisotropic gold nanostructures and widens their potential application areas, such as surface plasmon exciton photonics, biomedical photonics, and photocatalysis.

Keywords: concave gold; nano arrows; catalytic reduction; gold nano; gold; arrows aucnas

Journal Title: Chemosphere
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.