LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stimulating biogas production from steam-exploded birch wood using Fenton reaction and fungal pretreatment.

Photo by bernardhermant from unsplash

Delignification of steam-exploded birch wood (SEBW) was stimulated using a pretreatment method including Fenton reaction (FR) and fungi. SEBW was employed as a substrate to optimize the Fe(III) and Fe(II)… Click to show full abstract

Delignification of steam-exploded birch wood (SEBW) was stimulated using a pretreatment method including Fenton reaction (FR) and fungi. SEBW was employed as a substrate to optimize the Fe(III) and Fe(II) dosage in FR. Maximum iron-binding to SEBW was obtained at pH 3.5. FR pretreatment increased biological methane yields from 257 mL/g vS in control to 383 and 352 mL/ g vS in samples with 0.5 mM Fe(II) and 1.0 mM Fe(III), respectively. Further enzymatic pretreatment using a commercial cellulase cocktail clearly improved methane production rate but only increased the final methane yields by 2-9 %. Finally, pretreatments with the fungi Pleurotus ostreatus (PO) and Lentinula edodes (LE), alone or in combination with FR, were carried out. SEBW pretreated with only LE and samples pretreated with PO and1 mM Fe(III) + H2O2 increased the methane production yield to 420 and 419 mL/g vS respectively. These pretreatments delignified SEBW up to 25 %.

Keywords: fenton reaction; pretreatment; birch wood; production; steam exploded; exploded birch

Journal Title: Bioresource technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.