LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Manufacturing hydroxyapatite scaffold from snapper scales with green phenolic granules as the space holder material.

Photo by nci from unsplash

Hydroxyapatite (HA) scaffold was made using the powder metallurgy with an use of a space holder method with a pore-forming agent from green phenolic (GP) granules. The novelty of this… Click to show full abstract

Hydroxyapatite (HA) scaffold was made using the powder metallurgy with an use of a space holder method with a pore-forming agent from green phenolic (GP) granules. The novelty of this study was the use of GP granules as an agent that does not melt at high temperatures to avoid damaging the tangential contact between the HA powder during the sintering process. HA from snapper scales was added and mixed with polyvinyl alcohol (PVA) and ethanol to form a slurry. The ethanol content was then removed by drying at room temperature. The HA, which contained PVA, was added with GP granules as a pore-forming agent in various amounts to get the desired porosity. The green body was made using a stainless steel mold with the uniaxial pressing process under a pressure of 100 MPa. To make a scaffold sintered body, a sintering process ran at 1200 °C with a holding time of 2 h while maintaining the heating and cooling rates at 5 °C/min. The physical properties of the scaffold sintered body were characterized through linear shrinkage test, pore measurement, porosity test, phase observation by X-ray diffraction (XRD), and microstructure observation by scanning electron microscopy (SEM) and digital microscopy (DM). So were the mechanical ones through a compressive strength test. The results showed that the sintered body had a compressive strength value of 1.6 MPa at a porosity of 60.7% with a pore size of 129-394 μm. The scaffold contained interconnections between pores at a HA:GP ratio of 55:45 wt%, which matched the condition required for cell tissue growth. The conclusion is that GP granules are good enough to be used as a pore-making agent on scaffolds using the space holder method because they do not damage the tangential contact between the HA powder during the sintering process. However, efforts are needed to remove the remaining GP ash on the scaffold.

Keywords: microscopy; phenolic granules; hydroxyapatite scaffold; green phenolic; space holder

Journal Title: Journal of the mechanical behavior of biomedical materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.