LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Norfloxacin mineralization under light exposure using Sb-SnO2 ceramic anodes coated with BiFeO3 photocatalyst.

Photo from wikipedia

Advanced Oxidation Processes have been proven to be an efficient way to remove organic pollutants from wastewaters. In this work, a ceramic electrode of Sb-SnO2 (BCE) with a layer of… Click to show full abstract

Advanced Oxidation Processes have been proven to be an efficient way to remove organic pollutants from wastewaters. In this work, a ceramic electrode of Sb-SnO2 (BCE) with a layer of the photocatalytic material BiFeO3 (BFO-BCE), has been characterized electrochemically and further tested for norfloxacin photo-electrooxidation in the presence and absence of light. The electrode photoactivity was highly enhanced thanks to the presence of BiFeO3, as confirmed by Linear Sweep Voltammetry, chronoamperometry and potentiometry, and Electrochemical Impedance Spectroscopy. Additionally, working in galvanostatic mode, a high mineralization of norfloxacin was achieved after 240 min, reaching 62% at 25 mA cm-2 under light conditions. This value is comparatively higher than the 40% achieved with the BCE. The oxidation byproducts were followed by ionic chromatography and HPLC analysis, which also allowed us to propose an oxidation pathway of the norfloxacin molecule. Finally, some indicators of the reactor performance such as the Mineralization Current Efficiency and the specific energy consumption were analyzed, revealing that lower current densities (8.3 mA cm-2) led to higher current efficiencies, and that light improved both the current efficiency and energy consumption.

Keywords: using sno2; mineralization light; exposure using; light exposure; norfloxacin mineralization; mineralization

Journal Title: Chemosphere
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.