LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microbially influenced tungsten mobilization and formation of secondary minerals in wolframite tailings.

Photo from wikipedia

Wolframite [(Fe,Mn)WO4] tailings represent a hazardous waste that can pose a threat to the environment, humans, animals and plants. The present study aims to conduct a high-resolution depth profile characterization… Click to show full abstract

Wolframite [(Fe,Mn)WO4] tailings represent a hazardous waste that can pose a threat to the environment, humans, animals and plants. The present study aims to conduct a high-resolution depth profile characterization of wolframite tailings from Wolfram Camp, North Queensland, Australia, to understand the biogeochemical influences on W mobilization. Several indigenous Fe- and S-oxidizing bacteria (e.g., Streptococcus pneumoniae and Thiomonas delicata) in wolframite tailings were found highly associated with W, As, and rare earth elements. Biooxidation of metal sulfides, i.e., pyrite, molybdenite and bismuthinite, produced sulfuric acid, which accelerated the weathering of wolframite, mobilizing tungstate (WO42-). Using synchrotron-based X-ray fluorescence microscopy (XFM) and W L-edge X-ray absorption near-edge spectroscopy (ยต-XANES) analysis, wolframite was initially transformed into Na- and Bi- tungstate as well as tungstic acid (partial weathering) followed by the formation of Ga- and Zn- tungstate after extensive weathering, i.e., the wolframite had disappeared. While W (VI) was the major W species in wolframite tailings, minor W(0) and W(II), and trace W(IV) were also detected. The major contaminant in the Wolfram Camp tailings was As. Though wolframite tailings are hazardous waste, the toxicity of W was unclear. Tungsten waste still has industrial value; apart from using them as substitution material for cement and glass production, there is interest in reprocessing W waste for valuable metal recovery. If the environmental benefits are taken into consideration, i.e., preventing the release of toxic metals into surrounding waterways, reprocessing may be economic.

Keywords: microbially influenced; waste; wolframite tailings; formation; mobilization; influenced tungsten

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.