LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biostimulation of jarosite and iron oxide-bearing mine waste enhances subsequent metal recovery.

Photo from wikipedia

Novel resource recovery technologies are required for metals-bearing hazardous wastes in order to achieve circular economy outcomes and industrial symbiosis. Iron oxide and co-occurring hydroxysulphate-bearing wastes are globally abundant and… Click to show full abstract

Novel resource recovery technologies are required for metals-bearing hazardous wastes in order to achieve circular economy outcomes and industrial symbiosis. Iron oxide and co-occurring hydroxysulphate-bearing wastes are globally abundant and often contain other elements of value. This work addresses the biostimulation of indigenous microbial communities within an iron oxide/ hydroxysulphate-bearing waste and its effect on the subsequent recoverability of metals by hydrochloric, sulphuric, citric acids, and EDTA. Laboratory-scale flow-through column reactors were used to examine the effect of using glycerol (10% w/w) to stimulate the in situ microbial community in an iron oxide/ hydroxysulphate-bearing mine waste. The effects on the evolution of leachate chemistry, changes in microbiological community, and subsequent hydrometallurgical extractability of metals were studied. Results demonstrated increased leachability and selectivity of Pb, Cu, and Zn relative to iron after biostimulation with a total of 0.027 kg of glycerol per kg of waste. Biostimulation, which can be readily applied in situ, potentially opens new routes to metal recovery from globally abundant waste streams that contain jarosite and iron oxides.

Keywords: waste; biostimulation; iron; bearing mine; iron oxide; recovery

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.