LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Visible-light-driven photocatalytic degradation of tetracycline hydrochloride by Z-scheme Ag3PO4/1T@2H-MoS2 heterojunction: Degradation mechanism, toxicity assessment, and potential applications.

Photo by connormisset from unsplash

Residual antibiotics in wastewater threaten living organisms and the ecosystem, while the photocatalytic process is recognized as one of the most eco-friendly and promising technologies for the treatment of antibiotic… Click to show full abstract

Residual antibiotics in wastewater threaten living organisms and the ecosystem, while the photocatalytic process is recognized as one of the most eco-friendly and promising technologies for the treatment of antibiotic wastewater. In this study, a novel Z-scheme Ag3PO4/1T@2H-MoS2 heterojunction was synthesized, characterized, and used for the visible-light-driven photocatalytic degradation of tetracycline hydrochloride (TCH). It was found that Ag3PO4/1T@2H-MoS2 dosage and coexisting anions had significant effects on the degradation efficiency, which could reach up to 98.9 % within 10 min under the optimal condition. Combing experiments and theoretical calculations, the degradation pathway and mechanism were thoroughly investigated. The excellent photocatalytic property of Ag3PO4/1T@2H-MoS2 was achieved attributed to the Z-scheme heterojunction structure, which remarkably inhibited the recombination of photoinduced electrons and holes. The potential toxicity and mutagenicity for TCH and generated intermediates were evaluated, which revealed the ecological toxicity of antibiotic wastewater was reduced effectively during the photocatalytic degradation process.

Keywords: ag3po4 mos2; degradation; photocatalytic degradation; heterojunction

Journal Title: Journal of hazardous materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.