LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reductive roasting of arsenic-contaminated red mud for Fe resources recovery driven by johnbaumite-based arsenic thermostabilization strategy.

Photo from wikipedia

Arsenic-contaminated red mud (As-RM) is a hazardous waste with limited recycling approaches. Generally, through reductive roasting and magnetic separation, RM could be transformed into Fe-rich concentrate for Fe resource recovery.… Click to show full abstract

Arsenic-contaminated red mud (As-RM) is a hazardous waste with limited recycling approaches. Generally, through reductive roasting and magnetic separation, RM could be transformed into Fe-rich concentrate for Fe resource recovery. However, due to the poor thermostabilization of As species, reductive roasting of As-RM would cause severe As volatilization pollution together with high As leaching risks from heated residue. Herein, a novel johnbaumite-based As thermostabilization strategy is developed for clean Fe resources recycling from As-RM. We found that in the presence of Ca(OH)2, the As species in As-RM could be immobilized as thermostable and insoluble johnbaumite (Ca5(AsO4)3OH) at 900 °C, effectively enhancing the As thermostability and insolubility. Introducing 1.5% Ca(OH)2 into As-RM suppressed the As volatilization ratio from 60.3% to 15.7% during reductive roasting. Meanwhile, the As leaching concentration of the reduced residue was reduced to < 100 µg/L, thus satisfying the Japanese wastewater discharge standard. A concentrate with approximately 67.5% total iron grade was obtained from As-RM through this clean reductive roasting and magnetic separation. Overall, the approach introduced in this work effectively reduces the As diffusion pollution deriving from As-RM thermal reduction, which could contribute to hazardous As-RM reutilization, clean Fe resources recovery, and As pollution mitigation.

Keywords: arsenic contaminated; red mud; contaminated red; thermostabilization; reductive roasting; recovery

Journal Title: Journal of hazardous materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.