LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ensemble machine learning approach for examining critical process parameters and scale-up opportunities of microbial electrochemical systems for hydrogen peroxide production.

Photo by sajadnori from unsplash

Hydrogen peroxide (H2O2) production in microbial electrochemical systems (MESs) is an attractive option for enabling a circular economy in the water/wastewater sector. Here, a machine learning algorithm was developed, using… Click to show full abstract

Hydrogen peroxide (H2O2) production in microbial electrochemical systems (MESs) is an attractive option for enabling a circular economy in the water/wastewater sector. Here, a machine learning algorithm was developed, using a meta-learning approach, to predict the H2O2 production rates in MES based on the seven input variables, including various design and operating parameters. The developed models were trained and cross-validated using the experimental data collected from 25 published reports. The final ensemble meta-learner model (combining 60 models) demonstrated a high prediction accuracy with very high R2 (0.983) and low root-mean-square error (RMSE) (0.647 kg H2O2 m-3 d-1) values. The model identified the carbon felt anode, GDE cathode, and cathode-to-anode volume ratio as the top three most important input features. Further scale-up analysis for small-scale wastewater treatment plants indicated that proper design and operating conditions could increase the H2O2 production rate to as high as 9 kg m-3 d-1.

Keywords: hydrogen peroxide; electrochemical systems; microbial electrochemical; machine learning; production; learning approach

Journal Title: Chemosphere
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.