LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thiol-decorated defective metal-organic framework for effective removal of mercury(II) ion.

Photo from wikipedia

Removal of mercury (Hg) ion from water is important while still faces challenges in capacity and adsorption speed. Herein, using thiol-containing mercaptoacetic acid (MA) as the template, we constructed a… Click to show full abstract

Removal of mercury (Hg) ion from water is important while still faces challenges in capacity and adsorption speed. Herein, using thiol-containing mercaptoacetic acid (MA) as the template, we constructed a novel metal-organic framework (MOF) adsorbent, Zr-MSA-MA (MSA, mercaptosuccinic acid). Unlike other monodentate acids such as acetic acid and formic acid, MA benefits to maintain high-content binding sites, in the meantime of defect formation. On the basis, Zr-MSA-MA exhibits a high adsorption capacity of 714.8 mg g-1 for Hg2+ and fast adsorption kinetics, superior to other MOF-based adsorbents. Co-existing metal ions and pH have only slight interference for the adsorption behavior. Besides, the adsorption is proved to an endothermic reaction and the adsorbent can be regenerated based on a simple elution. Further analysis indicates the strong chemical bonding of Hg2+ and -SH is the main adsorption mechanism. Thus, our work demonstrates the Zr-MSA-MA can serve as a potential adsorbent for Hg2+, and provides a novel strategy to construct defective adsorbent via using active group-containing template.

Keywords: adsorption; removal mercury; organic framework; metal organic; metal; mercury ion

Journal Title: Chemosphere
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.