The advances in heterogeneous photocatalysts are still confined to evaluating the functional photocatalytic activity of catalysts in simple batch-mode operation. Nevertheless, the long-term stability, recovery-reusability, and cost-effectiveness of photocatalysts are… Click to show full abstract
The advances in heterogeneous photocatalysts are still confined to evaluating the functional photocatalytic activity of catalysts in simple batch-mode operation. Nevertheless, the long-term stability, recovery-reusability, and cost-effectiveness of photocatalysts are critical issues in practical applications for pollution control. This study examined the critical parameters to improve the photocatalytic degradation activity of the antibiotic tetracycline and strategized successful continuous performance in a two-stage photocatalytic process adopting sequencing batch-mode microbubble upflow airlift reactor (UALR) followed by the centrifugal separation of CdS nanoparticles (NPs). The most effective strategy for NPs separation was a sequential combination of gravity separation (10 min settling) in the settling phase and subsequent high-speed centrifugation (5 min at 25,000×g) of the settled NPs sediments, providing an economic benefit by reducing the centrifugation capacity. During steady state operation under the optimal conditions, the UALR showed reliable performance, resulting in 97-91% and 85-81% degradation efficiency at 60- and 30-min reaction time per cycle, respectively. A weak basic condition (pH 8) and dissolved oxygen (DO) supplementation increased the photocatalytic activity by 12% (0.0292 min-1) and 30% (0.0363 min-1) compared to the control. Trapping studies confirmed the enhanced performance using various reactive oxygen species scavengers, revealing an increase in •OH generation (6.5%).
               
Click one of the above tabs to view related content.