This study reports the development of a Tb-metal-organic framework (Tb-MOF)-based fluorescent platform for the detection of propyl gallate (PG). The Tb-MOF using 5-boronoisophthalic acid (5-bop) as the ligand exhibited multiple… Click to show full abstract
This study reports the development of a Tb-metal-organic framework (Tb-MOF)-based fluorescent platform for the detection of propyl gallate (PG). The Tb-MOF using 5-boronoisophthalic acid (5-bop) as the ligand exhibited multiple emissions at 490, 543, 585, and 622 nm under an excitation wavelength of 256 nm. The fluorescence of Tb-MOF was selectively and significantly weakened in the presence of PG due to the special nucleophilic reaction between the boric acid of Tb-MOF and o-diphenol hydroxyl of PG, and the combined effect of static quenching and internal filtering. Furthermore, this sensor enabled the determination of PG within seconds in a wide linear range of 1-150 μg/mL, and with a low detection limit of 0.098 μg/mL, and high specificity against other phenolic antioxidants. This work provided a new route for the sensitive and selective determination of PG in soybean oil, thus was perspective to monitor and reduce the risk of PG overuse.
               
Click one of the above tabs to view related content.