A new acetamiprid (AP) molecularly imprinted polymer (MIP) nanosol was synthesized with α-methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker and 2,2'-azobisisobutyronitrile as initiator, under the microwave irradiation.… Click to show full abstract
A new acetamiprid (AP) molecularly imprinted polymer (MIP) nanosol was synthesized with α-methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker and 2,2'-azobisisobutyronitrile as initiator, under the microwave irradiation. It was characterized by transmission electron microscopy, specific surface area and pore size analysis, and molecular spectroscopy. The bifunctional MIP nanomaterial not only had the recognition of AP but also had a strong catalysis of the nanogold dimode indicator reaction of chloroauric acid-dopamine. The generated gold nanoparticles (AuNPs) had strong surface-enhanced Raman scattering (SERS) and resonance Rayleigh scattering (RRS) effects, and the two kinds of signals enhanced linearly with imprinted molecule AP increasing. Accordingly, a novel SERS/RRS nanosensor platform was constructed to detect 0.25-20 pmol/L and 0.5-50 pmol/L AP by SERS and RRS monitoring respectively. Moreover, a reliable nanocatalytic mechanism was proposed.
               
Click one of the above tabs to view related content.