LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Creating anti-viral high-touch surfaces using photocatalytic transparent films.

Photo by katierainbow from unsplash

Antimicrobial and self-cleaning surface coatings are promising tools to combat the growing global threat of infectious diseases and related healthcare-associated infections (HAIs). Although many engineered TiO2-based coating technologies are reporting… Click to show full abstract

Antimicrobial and self-cleaning surface coatings are promising tools to combat the growing global threat of infectious diseases and related healthcare-associated infections (HAIs). Although many engineered TiO2-based coating technologies are reporting antibacterial performance, the antiviral performance of these coatings has not been explored. Furthermore, previous studies have underscored the importance of the "transparency" of the coating for surfaces such as the touch screens of medical devices. Hence, in this study, we fabricated a variety of nanoscale TiO2-based transparent thin films (anatase TiO2, anatase/rutile mixed phase TiO2, silver-anatase TiO2 composite, and carbon nanotube-anatase TiO2 composite) via dipping and airbrush spray coating technologies and evaluated their antiviral performance (Bacteriophage MS2 as the model) under dark and illuminated conditions. The thin films showed high surface coverage (ranging from 40 to 85%), low surface roughness (maximum average roughness 70 nm), super-hydrophilicity (water contact angle 6-38.4°), and high transparency (70-80% transmittance under visible light). Antiviral performance of the coatings revealed that silver-anatase TiO2 composite (nAg/nTiO2) coated samples achieved the highest antiviral efficacy (5-6 log reduction) while the other TiO2 coated samples showed fair antiviral results (1.5-3.5 log reduction) after 90 min LED irradiation at 365 nm. Those findings indicate that TiO2-based composite coatings are effective in creating antiviral high-touch surfaces with the potential to control infectious diseases and HAIs.

Keywords: transparent; anatase tio2; touch surfaces; high touch; tio2; performance

Journal Title: Chemosphere
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.