LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Activity and stability of bifunctional perovskite/carbon-based electrodes for the removal of antipyrine by electro-Fenton process.

Photo by armandoascorve from unsplash

Bifunctional perovskite/carbon-black(CB)/polytetrafluoroethylene(PTFE) electrodes for electro-generation and catalytic decomposition of hydrogen peroxide to oxidizing hydroxyl radicals have been fabricated. These electrodes were tested for electroFenton (EF) removal of antipyrine (ANT) as… Click to show full abstract

Bifunctional perovskite/carbon-black(CB)/polytetrafluoroethylene(PTFE) electrodes for electro-generation and catalytic decomposition of hydrogen peroxide to oxidizing hydroxyl radicals have been fabricated. These electrodes were tested for electroFenton (EF) removal of antipyrine (ANT) as a model antipyretic and analgesic drug. The influence of the binder loading (20 and 40 wt % PTFE) and type of solvent (1,3-dipropanediol and water) was studied for the preparation of CB/PTFE electrodes. The electrode prepared with 20 wt % PTFE and water exhibited a low impedance and remarkable H2O2 electro-generation (about 1 g/L after 240 min, a production rate of ca. 6.5 mg/h·cm2). The incorporation of perovskite on CB/PTFE electrodes was also studied following two different methods: i) direct deposition on the CB/PTFE electrode surface and ii) addition in the own CB/PTFE/water paste used for the fabrication. Physicochemical and electrochemical characterization techniques were used for the electrode's characterization. The dispersion of perovskite particles in the own electrode matrix (method ii) exhibited a higher EF performance than the immobilisation onto the electrode surface (method i). EF experiments at 40 mA/cm2 and pH 7 (non-acidified conditions) showed ANT and TOC removals of 30% and 17%, respectively. The increase of current intensity up to 120 mA/cm2 achieved the complete removal of ANT and 92% of TOC mineralisation in 240 min. The bifunctional electrode also proved high stability and durability after 15 h of operation.

Keywords: ptfe; perovskite carbon; bifunctional perovskite; removal antipyrine; perovskite

Journal Title: Chemosphere
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.