LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characteristics analysis of plastisphere biofilm and effect of aging products on nitrogen metabolizing flora in microcosm wetlands experiment.

Photo from wikipedia

The marsh, a significant terrestrial ecosystem, has steadily developed the capacity to act as a microplastics collection place (MPs). Here, 180 days of exposure to three different polymer kinds of… Click to show full abstract

The marsh, a significant terrestrial ecosystem, has steadily developed the capacity to act as a microplastics collection place (MPs). Here, 180 days of exposure to three different polymer kinds of plastics: polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC), were conducted in miniature wetlands (CWs). Water contact angle (WCA), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and High-throughput sequencing were used to study the succession of microbial community structure and function on MPs after 0, 90, and 180 days of exposure. The results showed that different polymers were degrading and aging differing degrees; PVC contained new functional groups with the symbols -CC-, -CO-, and -OH, while PE had the biggest range of contact angles (74.0-45.5°). Bacteria colonization was discovered on plastic surfaces, and as time went on, it became increasingly evident that the surfaces' composition had altered, and their hydrophobicity had diminished. The plastisphere's microbial community structure as well as water nitrification and denitrification were altered by MPs. In general, our study created a vertical flow-built wetland environment, monitored the impacts of plastic aging and breakdown products on nitrogen metabolizing microorganisms in wetland water, and offered a reliable site for the screening of plastic-degrading bacteria.

Keywords: products nitrogen; biofilm effect; plastisphere biofilm; analysis plastisphere; characteristics analysis; nitrogen metabolizing

Journal Title: Journal of hazardous materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.