LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antimicrobial Peptide Cec4 Eradicates Multidrug-Resistant Acinetobacter baumannii in vitro and in vivo

Introduction Acinetobacter baumannii has become a major difficulty in the treatment of bacteria-associated infection. The previously reported antimicrobial peptide Cec4 exhibited good and stable activity against A. baumannii in vitro,… Click to show full abstract

Introduction Acinetobacter baumannii has become a major difficulty in the treatment of bacteria-associated infection. The previously reported antimicrobial peptide Cec4 exhibited good and stable activity against A. baumannii in vitro, but the mechanisms and effects in vivo are elusive. Methods The effects of Cec4 on bacterial membrane permeability, membrane potential and bacterial reactive oxygen species were measured. The cell membrane localization of antimicrobial peptides was studied by fluorescence labelling. The ability of bacteria to develop resistance to antimicrobial peptides was studied by continuous induction, and transcriptome difference was analysed. The in vivo toxicity of Cec4 against nematodes and mice was studied, and the in vivo therapeutic potential of Cec4 against A. baumannii was assessed. Results Cec4 effectively cleared multidrug-resistant A. baumannii by altering bacterial cell membrane permeability, changing bacterial cell membrane polarity, and increasing bacterial intracellular reactive oxygen species. Cec4 affected the expression of the secretion system, outer membrane, and efflux pump genes of A. baumannii. In addition, the bacteria did not acquire stable drug-resistant ability. Cec4 at 1.024 mg/mL did not affect the proliferation of HeLa and HepG2 cells, and Cec4 at 45 mg/kg had little effect on the mortality of Caenorhabditis elegans, even the liver and kidney tissues of mouse. Most importantly, Cec4 could effectively improve the survival rates and reduce the bacterial load of various tissues in the mouse model of infection. Conclusion In conclusion, Cec4 can damage the cell membrane of bacteria, and the bacteria is not easy to produce resistance to Cec4. Besides, Cec4 has good potential for the treatment of multidrug-resistant A. baumannii infections.

Keywords: antimicrobial peptide; cec4; acinetobacter baumannii; multidrug resistant; membrane; baumannii

Journal Title: Drug Design, Development and Therapy
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.