LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Essential Role Of High Glucose-Induced Overexpression Of PKCβ And PKCδ In GLP-1 Resistance In Rodent Cardiomyocytes

Purpose Myocardia in diabetic patients exhibit increased vulnerability after ischemia/reperfusion injury (IRI). It has been demonstrated that glucagon-like peptide-1 (GLP-1) has a protective effect on cardiomyocytes. Protein kinase C (PKC)… Click to show full abstract

Purpose Myocardia in diabetic patients exhibit increased vulnerability after ischemia/reperfusion injury (IRI). It has been demonstrated that glucagon-like peptide-1 (GLP-1) has a protective effect on cardiomyocytes. Protein kinase C (PKC) acts as a key regulator of many signaling pathways including oxidative stress and apoptosis. Our hypothesis is that increased vulnerability of myocardia in diabetic patients is partly due to GLP-1 resistance. The aim of this study was to explore the role of PKC in GLP-1 resistance in diabetic cardiomyocytes. Methods Cardiac function of diabetic or non-diabetic mice after myocardial IRI was detected with or without administration of GLP-1 analog exendin-4. Impacts of diabetes mellitus on GLP-1R expression in myocardia after IRI were accessed by Western blot. By transfecting PKC isoforms siRNA, in vitro study helped to identify the exact PKC isoforms which contributed to the downregulatio n of GLP-1R or impaired post-receptor signaling pathways in rodent cardiomyocytes (H9C2 cells) cultured by high glucose. Results The cardioprotective effects of endogenous GLP-1 were impaired in diabetic mice after myocardial IRI and administration of exendin-4 had no significant effects in restoring cardiac function. GLP-1 receptor (GLP-1R) expression decreased in H9C2 cells cultured by high glucose and knockdown of PKCβ partly restored GLP-1R expression. Overexpression of PKCδ induced by high glucose in H9C2 cells impaired GLP-1 post-receptor anti-apoptotic signaling pathways by inhibition of Akt phosphorylation. Knockdown of both PKCβ and PKCδ significantly restored cardioprotective effects of GLP-1 in H9C2 cells cultured by high glucose. Conclusion Our study found out a new mechanism of GLP-1 resistance that high glucose-induced overexpression of PKCβ and PKCδ impaired cardioprotective effects of GLP-1 by downregulation of GLP-1R and inhibition of GLP-1 post-receptor anti-apoptotic signaling pathways, thus provided a new perspective in treating myocardial IRI in diabetic patients.

Keywords: overexpression pkc; glp resistance; glp; pkc; high glucose

Journal Title: Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.