LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Complete Genome of Nocardia terpenica NC_YFY_NT001 and Pan-Genomic Analysis Based on Different Sources of Nocardia spp. Isolates Reveal Possibly Host-Related Virulence Factors

Photo by aridley88 from unsplash

Objective We aimed to identify the possible virulence genes associated with Nocardia NC_YFY_NT001 isolated by ourselves and other Nocardia spp. Methods The genome of Nocardia terpenica NC_YFY_NT001 was completed by… Click to show full abstract

Objective We aimed to identify the possible virulence genes associated with Nocardia NC_YFY_NT001 isolated by ourselves and other Nocardia spp. Methods The genome of Nocardia terpenica NC_YFY_NT001 was completed by using PacBio and Illumina platforms. A pan-genomic analysis was applied to selected complete Nocardia genomes. Results Nocardia terpenica NC_YFY_NT001 can cause healthy mice death by tail intravenous injection. The genome of NT001 has one circular chromosome 8,850,000 bp and one circular plasmid 70,000 bp with ~68% GC content. The chromosome and plasmid encode 7914 and 80 proteins, respectively. Furthermore, a pan-genomic analysis showed a total of 45,825 gene clusters, then 304 core, 21,045 shell and 24,476 cloud gene clusters were classified using specific parameters. In addition, we found that catalases were more abundant in human isolates. Furthermore, we also found no significant differences in the MCE proteins between different strains from different sources. The pan-genomic analysis also showed that 67 genes could only be found in humoral isolates. ReX3 and DUF853 domain protein were found in all eight human isolates. The composition of unique genes in humoral isolate genomes indicated that the transcriptional regulators may be important when Nocardia invades the host, which allows them to survive in the new ecological system. Conclusion In this study, we confirmed that NT001 could cause infected animal death, and identified many possible virulence factors for our future studies. This study also provides new insight for our further study on Nocardia virulence mechanisms.

Keywords: yfy nt001; nocardia terpenica; pan genomic; genomic analysis; virulence

Journal Title: Infection and Drug Resistance
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.