LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Systemic toxicity induced by aggregated layered double hydroxide nanoparticles

Photo by julianhochgesang from unsplash

Layered double hydroxide (LDH) nanoparticles are emerging as one of the promising nanomaterials for biomedical applications, but their systemic toxicity in vivo has received little attention. In the present study,… Click to show full abstract

Layered double hydroxide (LDH) nanoparticles are emerging as one of the promising nanomaterials for biomedical applications, but their systemic toxicity in vivo has received little attention. In the present study, the effects of inorganic nanoparticle aggregation on their systemic toxicity were examined. Remarkably, aggregation was observed after the mixing of naked LDH nanoparticles with saline or erythrocytes. Significant accumulation of the naked LDH nanoparticles in the lungs of mice was detected 1 h after intravenous administration, and the survival rate of mice was 0% after 6 repeated injections. Furthermore, flocculent precipitates in the alveoli and congestion in the lung interstitium were observed in the dead mice. However, lipid membrane-coated LDH nanoparticles would not form aggregates and could be injected intravenously >6 times without causing death. These findings suggested that repeated injections of LDH were lethal even at low dose (30 mg/kg), and lipid membrane coating can be considered as an approach for reducing this risk.

Keywords: layered double; ldh nanoparticles; toxicity; double hydroxide; systemic toxicity

Journal Title: International Journal of Nanomedicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.