LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

“Shell-Core” Bilayer Nanoparticle as Chemotherapeutic Drug Co-Delivery Platforms Render Synchronized Microenvironment Respond and Enhanced Antitumor Effects

Photo by ldxcreative from unsplash

Background Synergistic chemotherapy has been proved as an effective antitumor means in clinical practice. However, most co-administration treatment often lacks simultaneous control over the release of different chemotherapeutic agents. Materials… Click to show full abstract

Background Synergistic chemotherapy has been proved as an effective antitumor means in clinical practice. However, most co-administration treatment often lacks simultaneous control over the release of different chemotherapeutic agents. Materials and Methods β-cyclodextrin modified hyaluronic acid was the “shell”, and the oxidized ferrocene-stearyl alcohol micelles served as the “core”, where doxorubicin (DOX) and curcumin (CUR) were loaded in shell and core of the bilayer nanoparticles (BNs), respectively. The pH- and glutathione (GSH)-responsive synchronized release behavior was evaluated in different mediums, and the in vitro and in vivo synergistic antitumor effect and CD44-mediated tumor targeting efficiency were further investigated. Results These BNs had a spherical structure with the particle size of 299 ± 15.17 nm, while the synchronized release behaviour of those two drugs was proved in the medium with the pH value of 5.5 and 20 mM GSH. The co-delivery of DOX and CUR reduced the IC50 value by 21% compared to DOX alone, with a further 54% reduction after these BNs delivery measurements. In tumor-bearing mouse models, these drug-loaded BNs showed significant tumor targeting, enhanced antitumor activity and reduced systemic toxicity. Conclusion The designed bilayer nanoparticle could be considered as potential chemotherapeutic co-delivery platform for efficient synchronized microenvironment respond and drug release. Furthermore, the simultaneous and synergistic drug release guaranteed the enhanced antitumor effects during the co-administration treatment.

Keywords: shell core; enhanced antitumor; core bilayer; release; drug; delivery

Journal Title: International Journal of Nanomedicine
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.